李传友教授
学历:博士
职称:教授
联系电话:0538-8241758;邮件:[email protected]
所属部门:生物技术系
个人简介
李传友,博士、教授,博士生导师。1999年获中国科威尼斯人网址 遗传研究所博士学位。1999-2003年在Michigan State University DOE-Plant Research Laboratory从事博士后研究。2003年入选中国科威尼斯人网址 “百人计划”,2004年获 “国家杰出青年科学基金”资助。2015年入选泰山学者优势特色学科团队领军人才。2016年入选中组部“万人计划”科技创新领军人才。担任国家重大科学研究计划项目首席科学家,主要学术兼职包括《Molecular Plant》、《Horticulture Research》、《Plant Molecular Biology》等国际著名刊物编委。作为执行委员会委员和中方联络人组织实施了国际茄科基因组计划,完成了栽培番茄与其起源种醋栗番茄基因组的精细序列分析。组织召开了第286次香山科学会议“植物激素与绿色革命”和第479次香山科学会议“植物发育与生殖:前沿科学问题与发展战略”。作为学术秘书申请并组织实施了国家自然科学基金委首个重大研究计划项目“植物激素作用的分子机理”(2008–2016年)并在结题验收中获得优秀。
李传友团队长期研究植物系统性防御与可塑性发育的机理。创造性地把植物受伤反应分为防御与再生两个密不可分的生理过程,破译了逆境条件下植物通过改变干细胞活性协同调控适应性生长和抗性的分子机制,发现了调控植物组织修复和器官再生的原初受伤信号--再生因子REF1并揭示了其在作物遗传改良中的巨大应用价值。精细解读了模式植物番茄的基因组,致力于健康美味番茄精准设计育种。在Cell、Nature、Nature Plants、PNAS、Molecular Plant、Plant Cell等国际主流学术刊物发表论文130余篇,引用12000余次。在国际权威出版社ELSEVIER出版英文专著《Hormone Metabolism and Signaling in Plants》。H-index为57。入选Clarivate Analytics(科睿唯安)全球前1%高被引学者名单,连续四年入选ELSEVIER(爱思唯尔)中国高被引学者名单。申请PCT 专利1项,获得授权专利20余项、植物新品种权2项,育成农业农村部登记番茄品种7个。
研究方向
1. 茉莉酸作用机理
茉莉酸既调控植物免疫,又在植物可塑性发育中发挥重要作用。茉莉酸信号通路的实质是核心转录因子MYC2介导的转录重编程。一方面,我们研究中介体亚基MED25与MYC2形成的功能复合体MMC (MYC2-MED25 Functional Transcription Complex)在茉莉酸信号的激活、级联放大、终止以及精细调控中的
作用机制;另一方面,我们研究免疫激素茉莉酸与生长激素互作通过改变干细胞活性调控植物可塑性发育和器官再生的机理。
2. 植物防御与再生机理
与动物相比,固着生长的植物更易遭受机械损伤。在长期的进化过程中,植物形成了动物不可比拟的应对损伤的能力。面对损伤,植物能快速激活防御反应,并轻松自如地进行组织修复和器官再生。在番茄中,人们发现了植物对机械损伤的系统性防御现象,并证实小肽激素系统素(systemin)和经典激素茉莉酸通过共同的信号通路调控植物的系统性防御反应。相比而言,人们对损伤引发植物再生的原初信号及其转导机制知之甚少。我们以番茄为模式,建立了用正向遗传学手段解析植物受伤反应的研究体系。一方面,我们进行了大规模的遗传筛选获得了一系列系统素信号通路的抑制子(suppressor of prosystemin-mediated responses, spr),通过对这些防御缺陷突变体的研究分离关键组分,在此基础上解析植物的系统性防御反应的调控机理。另一方面,我们创造性地提出在植物受伤反应中防御功能与再生功能是密不可分的这一全新理念,据此从分析防御缺陷突变体的再生表型入手鉴定防御和再生同时发生缺陷的突变体,找到了诱发植物再生的原初受伤信号分子—再生因子REF1,在此基础上系统解析植物组织修复和器官再生的信号网络。
3. 番茄重要农艺性状形成机理解析与种质创新
开展番茄功能基因组学研究,与国际同行一道完成了栽培番茄及其起源种醋栗番茄基因组的精细序列分析。聚焦番茄对重大病害(土传病害颈腐根腐病、青枯病,死体营养型病害灰霉病、灰叶斑病,褐色皱果病毒病等)的抗性和品质(风味品质、营养品质和健康品质)等重要农艺性状,从丰富的种质资源入手,鉴定控制番茄抗病性和优质的关键基因,阐明番茄抗病性和品质性状形成的分子机理。鉴定关键抗性基因和优质基因的优异单倍型,解析其驯化和演化规律,创制对番茄抗性和果实品质提升有显著效应的新种质。
4. 健康美味番茄生物育种
针对目前对抗性与品质互作机制认识不足的现状,聚焦影响番茄品质的重要病害,建立抗性与品质互作的研究模型,解析番茄抗性与品质基因互作的遗传与代谢基础,发掘同时控制抗性和品质性状形成的节点基因,创制对综合性状提升有显著效应的番茄新种质。在此基础上,采取基因组设计和生物育种新手段,培育营养健康、绿色高效的美味番茄新品种。
媒体报道
【中央电视台】CCTV2《中国经济大讲堂》——“餐桌上的大科技:小番茄如何变身大‘柿’业?”
【中央电视台】CCTV10《透视新科技》——番茄变身记
【中央电视台】CCTV1《新闻联播》——我国主导完成番茄基因组测序
【中央电视台】CCTV13《新闻直播间》——关注番茄基因组测序 我国主导完成番茄基因组测序
【中央电视台】CCTV13《新闻直播间》——关注番茄基因组测序 基因“争夺”:没有硝烟的战争
【山东电视台】山东卫视《山东新闻联播》——破解世纪难题 澳门威尼斯人网站 首次发现植物再生因子
//sdxw.iqilu.com/share/dHYtMjEtNTUzMTg1Mw.html#/
【山东电视台】山东新闻频道《闪电会客厅》——山东科研团队首次发现植物再生因子
//sdxw.iqilu.com/share/dHYtMjEtNTUzNjk5Nw.html#/
【山东电视台】山东农科频道《山农大家说》——李传友教授团队:破解世纪难题 揭开再生奥秘
【山东电视台】山东卫视《山东新闻联播》——澳门威尼斯人网站 李传友团队揭示番茄果形建成机制并研发出机采鲜食番茄
【CC讲坛】李传友:揭秘番茄的智慧
【科技日报】植物再生的“指挥官”找到了
【光明日报】澳门威尼斯人网站 团队揭示植物再生机制
【科技日报】让鲜食番茄既耐挤压又香甜
【光明日报】澳门威尼斯人网站 研发出适合机采的鲜食番茄
【民生周刊】小番茄里有“大智慧”,
【农民日报】丢掉的番茄味,是怎样找回来的?,
代表性论著(*通讯作者)
Yang W, Zhai H, Wu F, Deng L*, Chao Y, Meng X, Chen Q, Liu C, Bie X, Sun C, Yu Y, Zhang X, Zhang X, Chang Z, Xue M, Zhao Y, Meng X, Li B, Zhang X, Zhang D, Zhao X, Gao C, Li J, and Li C*. (2024). Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187: 3024–3038.
新闻公众号:专家点评 Cell | 破解世纪难题——李传友团队首次发现再生因子调控植物组织修复和器官再生,
Han H, Li X, Li T, Chen Q, Zhao J, Zhai H, Deng L, Meng X*, and Li C*. (2024). Chromosome-level genome assembly of Solanum pimpinellifolium. Sci. Data 11: 577.
新闻公众号:澳门威尼斯人网站 李传友团队解析醋栗番茄基因组,
Yang T, Deng L*, Wang Q, Sun C, Ali M, Wu F, Zhai H, Xu Q, Xin P, Cheng S, Chu J, Huang T, Li C-B, and Li C*. (2024). Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Mol. Plant 17: 509–512.
新闻公众号:中科院遗传发育所/山东农大李传友团队揭示果实成熟更易腐烂的分子机理并提出打破番茄优质与高抗负相关新策略,
.
新闻公众号:澳门威尼斯人网站 李传友团队揭示SlScaBP8的自然变异调控番茄盐碱胁迫抗性的分子机制,
Wang Y, Sun C, Ye Z, Li C, Huang S, and Lin T*. (2024). The genomic route to tomato breeding: Past, present, and future. Plant Physiol. DOI:10.1093/plphys/kiae248
Zhu Q, Deng L, Chen J, Rodriguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li C-B, van der Knaap E, and Li C* (2023). Redesigning the tomato fruit shape for mechanized production. Nat. Plants 9: 1659–1674.
Highlighted with a News article in Science,
获F1000推荐,
Deng L*, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li C-B, Zhong S, and Li C*. (2023). Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. Plant Cell 35: 1038–1057.
Highlighted with an In Brief article in Plant Cell,
新闻公众号:中科院遗传发育所李传友研究组揭示番茄果实成熟调控新机理,
Yang T, Ali M, Lin L, Li P, He H, Zhu Q, Sun C, Wu N, Zhang X., Huang T, Li C-B, Li C*, and Deng L*. (2023). Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Hortic. Res. 10: uhac214. (Cover story)
新闻公众号:中科院遗传发育所李传友课题组通过多重基因编辑实现番茄多种果色的快速同步定制,
Zhou M, Deng L, Yuan G, Zhao W, Ma M, Sun C, Du M*, Li C*, and Li C-B*. (2023). Rapid generation of a tomato male sterility system and its feasible application in hybrid seed production. Theor. Appl. Genet. 136: 197.
Zhou M, Deng L, Yuan G, Zhao W, Ma M, Sun C, Du M, Li C, and Li C-B*. (2023). A CRISPR-Cas9-derived male sterility system for tomato breeding. Agronomy 13: 1785.
Zhao Q, Zhao P, Wu Y, Zhong C, Liao H, Li C, Fu X, Fang P, Xu P*, and Xiang C*. (2023). SUE4, a novel PIN1-interacting membrane protein, regulates acropetal auxin transport in response to sulfur deficiency. New Phytol. 237: 78–87.
An C, Deng L, Zhai H, You Y, Wu F, Zhai Q, Goossens A, and Li C*. (2022). Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol. Plant 15: 1329–1346.
Highlighted with a Spotlights article in Molecular Plant,
新闻公众号:李传友研究组发现转录共抑制子TOPLESS通过可逆乙酰化修饰调控茉莉酸信号通路,
Du M, Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong J, Ren H, Cohen J, Li C*, and Gray W*. (2022). Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci. Adv. 8: eabj1570.
新闻公众号:Science Advances | 打破传统认知,李传友研究组合作解析植物顶端弯钩的形成机制,
Lin L, Du M, Li S, Sun C, Wu F, Deng L, Chen Q*, and Li C*. (2022). Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. J. Integr. Plant Biol. 64: 871–883
Zhou M, Deng L, Guo S, Yuan G, Li C*, and Li C-B*. (2022). Alternative transcription and feedback regulation suggest that SlIDI1 is involved in tomato carotenoid synthesis in a complex way. Hortic. Res. 9: uhab045. (Cover story)
Tao H, Miao H, Chen L, Wang M, Xia C, Zeng W, Sun B, Zhang F, Zhang S, Li C*, and Wang Q*. (2022). WRKY33-mediated indolic glucosinolate metabolic pathway confers resistance against Alternaria brassicicola in Arabidopsis and Brassica crops. J. Integr. Plant Biol. 64: 1007–1019.
Lian J, Han H, Chen X, Chen Q, Zhao J*, and Li C*. (2022). Stemphylium lycopersici Nep1-like protein (NLP) is a key virulence factor in tomato gray leaf spot disease. J. Fungi 8: 518.
Sun C, Li D, Gao Z, Gao L, Shang L, Wang M, Qiao J, Ding S, Li C, Geisler M, Jiang D, Qi Y*, and Qian Q*. (2022). OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice. J. Integr. Plant Biol. 64: 118-134.
Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q*, and Li C*. (2021). Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiol. 185: 1166–1181.
Liu H, Liu L, Liang D, Zhang M, Jia C, Qi M, Liu Y, Shao Z, Meng F, Hu S, Yin Y*, Li C*, and Wang Q*. (2021). SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience 24: 102926.
Zheng S, Ren P, Zhai M, Li C*, and Chen Q*. (2021). Identification of genes involved in root growth inhibition under lead stress by transcriptome profiling in Arabidopsis. Plant Mol. Biol. Rep. 39: 50–59.
Guo P, Chong L, Wu F, Hsu C, Li C, Zhu J-K, and Zhu Y*. (2021). Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. J. Integr. Plant Biol. 63: 802–815.
Zhai Q, Deng L, and Li C*. (2020). Mediator subunit MED25: at the nexus of jasmonate signaling. Curr. Opin. Plant Biol. 57: 78–86.
新闻公众号:Curr Opin Plant Biol | 李传友研究组应邀撰写茉莉酸信号通路转录调控机理的综述文章,
Zhai H, Zhang X, You Y, Lin L, Zhou W*, and Li C*. (2020). SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J. 39: e105047.
获F1000推荐,
新闻公众号:中科院遗传发育所李传友研究组揭示转录调控因子SEUSS调控干细胞命运决定的新机制,
Wu F, Deng L, Zhai Q, Zhao J, Chen Q, and Li C*. (2020). Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32: 429–448.
新闻公众号:遗传所李传友组揭示可变剪切调控茉莉酸信号通路的机制,
Du M*, Zhou K, Liu Y, Deng L, Zhang X, Lin L, Zhou M, Zhao W, Wen C, Xing J, Li C-B*, and Li C*. (2020). A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J. 102: 1090–1100.
新闻公众号:李传友研究组合作研发新型番茄雄性不育系统用于杂交种子生产,
You Y, An C, and Li C*. (2020). Insect feeding assays with Spodoptera exigua on Arabidopsis thaliana. Bio-protocol 10: e3538.
Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, Jiang H, Li C-B*, and Li C*. (2020). A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol. Plant 13: 42–58. (Cover story).
Highlighted with a Spotlights article in Molecular Plant,
新闻公众号:中科院遗传所李传友研究组在番茄花青素合成的转录调控机理研究中取得重要进展,
Sun W, Han H, Deng L, Sun C, Xu Y, Lin L, Ren P, Zhao J, Zhai Q*, and Li C. (2020). Mediator Subunit MED25 Physically Interacts with PHYTOCHROME INTERACTING FACTOR4 to Regulate Shade-Induced Hypocotyl Elongation in Tomato. Plant Physiol. 184:1549–1562.
Highlighted with a News and Views article in Plant Physiology,
Shao Z, Zhao Y, Liu L, Chen S, Li C, Meng F, Liu H, Hu S, Wang J, and Wang Q*.(2020). Overexpression of FBR41 enhances resistance to sphinganine analog mycotoxin-induced cell death and alternaria stem canker in tomato. Plant Biotechnol. J. 18: 141–154.
Ren K, Tian X, Li S, Mei E, He M, Tang J, Xu M, Li X, Wang Z, Li C, and Bu Q*. (2020). Oryza sativa mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice. J. Integr. Plant Biol. 62: 793–811.
Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman A, He J, Zhang J, Hua D, Yang L, Chen Z, Li C, Wang B, Song C, Sun Q, Yang S, Gong Z*.(2020). The Arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling. Plant Cell 32: 703–721.
Guo H, Sun Y, Yan H, Li C, and Ge F*. (2020). O-3-induced priming defense associated with the abscisic acid signaling pathway enhances plant resistance to Bemisia tabaci. Front. Plant Sci. 11: 93.
Yang T, Deng L, Zhao W, Zhang R, Jiang H, Ye Z*, Li C-B*, and Li C*. (2019). Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. J. Genet. Genomics 46: 505–508. (Cover story)
Wang H, Li S, Li Y, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang X, Li C*, and Zhao J*. (2019). MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signaling. Nat. Plants5: 616–625.
获F1000推荐,
新闻公众号:Nature Plants | 遗传所李传友/山东农大赵久海合作团队在植物转录增强子调控基因转录的机理研究中取得重要进展,
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q*, Li C*, and Zhai Q*. (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31: 106–127.
Highlighted with an In Brief article in Plant Cell,
Highlighted with a Spotlight article in Trends Plant Sci.,
获F1000推荐,
You Y, Zhai Q*, An C, and Li C*. (2019).LEUNIG_HOMOLOG mediates jasmonate-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31: 2187–2205.
新闻公众号:李传友研究组在茉莉酸信号转录调控机理研究中取得新进展,
Zhai Q, and Li C*. (2019). The plant Mediator complex and its role in jasmonate signaling.J. Exp. Bot.70: 3415–3424.
Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, and Scheres B*.(2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.
Zhang P, Wei J, Zhao C, Zhang Y, Li C, Liu S, Dickee M, Yu X, and Turlings TCJ*. (2019). Airborne host–plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc. Natl. Acad. Sci. USA.116: 7387–7396.
Shi X, Preisser E, Liu B, Pan H, Xiang M, Xie W, Wang S, Wu Q, Li C, Liu Y, Zhou X, and Zhang Y*. (2019). Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. BMC Plant Biol. 19: 556.
Wang M, Qiao J, Yu C, Chen H, Sun C, Huang L, Li C, Geisler M, Qian Q, Jiang D, and Qi Y*. (2019). The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant Cell Environ. 42: 1125–1138.
Qi L, Zhang X,Zhai H, Liu J, Wu F, Li C*,and Chen Q*. (2019). Elongator is required for root stem cell maintenance by regulating SHORT ROOT transcription. Plant Physiol. 179: 220–232.
Zhang R, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng Y-Q, Xiong L, Li C, Hetherington A, and Liang Y-K*. (2019).BIG regulates stomatal immunity and jasmonate production in Arabidopsis.New Phytol.222: 335–348.
Chen Q, Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavy P, Wabnik K, Geldner N, Benkova E, Le J, Fukaki H, Grotewold E, Li C, Friml J,Sack F, Beeckman T*, and Vanneste S*. (2015). A coherent transcriptional feed-forward motif controls auxin-sensitive PIN3 expression for lateral root development.Nat. Commun. 6: 8821.
Li C*. (2015). Toward understanding the stem-cell origin and the molecular regulation of rice tillering. J. Genet. Genomics 42: 47–48.
Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, and Zhou J*. (2015). An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27: 2032–2041.
Wang Z, Mao J, Zhao Y, Li C, and Xiang C*. (2015). L-Cysteine inhibits root elongationthrough auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana. J. Integr. Plant Biol. 57: 186–197.
Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang D, and Qi Y*. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryzasativa L.). Plant J. 83: 818–830.
Ren Q, Sun Y, Guo H, Wang C, Li C, and Ge F*. (2015). Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in Helicoverpa armigera. Entomol. Exp. Appl. 154: 188–198.
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Zhuo Huang Z, Wang B, Jiang H, Huang T, Li C-B, Wei J, Kang L, Li J, and Li C*. (2014). Closely-related NAC transcription factors of tomato differentially regulate stomatal closure and re-opening during pathogen attack. Plant Cell26: 3167–3184.
Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, and Xie D*. (2014). Interaction of MYC2 with EIN3 modulates antagonism between jasmonate and ethylene signaling. Plant Cell 26: 263–279.
Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, and Li Y*. (2014). The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis.Plant Cell 26: 665–677.
Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, and Jiang D*.(2014). OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa. L). Plant J. 79: 106–117.
Wang S, Xu Y, Li Z, Zhang S, Li C, Qian Q, Jiang D, and Qi Y*.(2014). OsMOGS is required for N-glycan formation and auxin-mediated root development in rice. Plant J.78: 632–645.
Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, and Liu D*. (2014). Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol. 165: 1156–1170.
Zhang G, Li S, Wang L, Ye W, Zeng D, Rao Y, Peng Y, Hu J, Yang Y, Xu J, Ren D, Gao Z, Zhu L, Dong G, Hu X, Yan M, Guo L, Li C, and Qian Q*.(2014). LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol. Plant7: 1350–1364.
Song Y, Ye M, Li C, He X, Zhu, Wang R, Su Y, Luo S, and Zeng R*.(2014). Hijacking common mycorrhizal networksfor herbivore-induced defence signaltransfer between tomato plants. Sci. Rep. 4: 3915.
Zhao Q, Wu Y, Gao L, Ma J, Li C, and Xiang C*. (2014). Sulfur nutrient availability regulates root elongation by affecting root indole-3-acetic acid levels and the stem cell niche. J. Integr. Plant Biol. 56: 1151–1163.
Zhang J, Liu X, Li S, Cheng Z, and Li C*. (2014). The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS ONE 9: e88068.
Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni J, Chetelat R, Zamir D, Stadler T, Li J, Ye Z, Du Y, and Huang S*. (2014). Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46: 1220–1226.
Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C-B, and Li C*. (2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 9:e1003964.
Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, and Palme K*. (2013). Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25: 4451–4468.
Sun J, Qi L, Li, Y, Zhai Q, and Li C*. (2013). PIF4 and PIF5 link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25: 2102–2114.
Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, and Li C*. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e1003422.
Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y, Yuan L, and Li C*. (2013). The rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. USA. 110: 3167–3172.
Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek S, and Pan J*. (2013). Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25: 499–516.
Wei J, Yan L, Ren Q, Li C, Ge F, and Kang L*.(2013). Antagonism between herbivore-induced plant volatiles and trichomes affects tritrophic interactions. Plant Cell Environ. 36: 315–327.
Song Y, Ye M, Li C, Wang R, Wei X, Luo S, and Zeng R*. (2013). Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J. Chem. Ecol. 39: 1036–1044.
Jia C, Zhang L, Liu L, Wang J, Li C, and Wang Q*. (2013). Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp lycopersici. J. Exp. Bot. 64: 637–650.
Sun J, Qi L, and Li C*. (2012). Hormonal regulation of polar auxin transport. Signaling and Communication in Plants, Springer Verlag volume. (Book chapter)
2898–2916.
The Tomato Genome Consortium.(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature485:635–641. (Cover story)
Ren J, Li C-B, and Li C*. (2012). Tomato genome gets fully decoded--Paves way to tastier and healthier fruits. J. Genet. Genomics39: 303–305.
Sun J, Qi L, Li Y, Chu J, and Li C*. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet.8:e1002594.
获F1000推荐,
Qi L, Yan J, Li Y, Jiang H, Sun J, Chen Q, Li H, Chu J, Yan C, Sun X, Yu Y, Li C-B, andLi C*. (2012). Arabidopsis plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola. New Phytol.195: 872–882.
Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, and Li C*. (2012). Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS ONE 7: e50089.
Guo H, Kang L, Li C, Ren Q, Sun Y, Wang C, and Ge F*. (2012). Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS ONE 7: e41426.
Liu L, Wei J, Zhang M, Zhang L, Li C, and Wang Q*. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J. Exp. Bot.53: 5751–5761.
Cui H, Sun Y, Su J, Li C, and Ge F*. (2012). Reduction in the fitness of Bemisia tabaci fed on three previously infested tomato genotypes differing in the jasmonic acid pathway. Environ. Entomol. 41: 1443–1453.
Cui H, Sun Y, Su J, Ren Q, Li C, and Ge F*. (2012). Elevated O-3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Inte. 6: 425–437.
Chen M, Liu H, Kong J, Yang Y, Zhang N, Li R, Yue J, Huang J, Li C, Cheung A, and Tao L*. (2011). RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell23:2880–2894.
Sun J, Chen Q, Qi L, Jiang H, Li S, Xu, Y, Liu F, Zhou W, Pan J, Li X, Palme K, and Li C*. (2011). Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol.191: 360–375.
获F1000推荐,
Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, and Li C*. (2011). The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating ABA signaling and drought response. Plant Physiol. 156:550–563.
Sun J, Jiang H, and Li C*.(2011). Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4: 607–615.
Zhang L, Jia C, Liu L, Zhang Z, Li C, and Wang Q*. (2011). The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J. Exp. Bot. 62: 5405–5418.
Sun Y, Yin J, Cao H, Li C, Kang L, and Ge F*. (2011). Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS ONE6: e19751.
Wei J, Wang L, Zhao J, Li C, Ge F, and Kang L*.(2011). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions. New Phytol. 189: 557–567.
Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu C-M, andLi C*. (2010). Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating post-embryonic maintenance of root stem cell niche. Plant Cell22: 3692–3709.
Li C*, and Li J. (2010). Toward understanding the molecular mechanisms governing plant hormone actions: A brief introduction to the Major Research Program “Molecular mechanisms of plant hormone actions” funded by the National Natural Science Foundation of China (NSFC). Chinese Sci. Bull.55: 2197.
Liu F, Jiang H, Ye S, Chen W-P, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, andLi C*. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res.20: 539–552.
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen J, Palme K, andLi C*. (2009). ArabidopsisASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation.Plant Cell21: 1495–1511.
463–481.
Liang W, Li C-B, Liu F, Jiang H, Li S, Sun J, Wu X, and Li C*. (2009). The Arabidopsis homologs of CCR4-associated factor 1 exhibit mRNA deadenylation activity and play a role in plant defense responses. Cell Res.19: 307–316.
Li C-B, Zhao J, Jiang H, Geng Y, Dai Y, Fan H, Zhang D, Chen J, Lu F, Shi J, Sun S, Chen J, Yan X, Lu C, Chen M, Cheng Z, Ling H, Wang Y, Xue Y, andLi C*. (2008). A snapshot of the Chinese SOL Project. J. Genet. Genomics35: 387–390.
Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, and Li C*. (2008). Mutation of the rice NARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol.147: 1947–1959.
Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, andLi C*.(2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res.18: 756–767.
Li H, Sun J, Xu Y, Jiang H, Wu X, andLi C*. (2007). The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol. Biol.65: 655–665.
Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, andLi C*.(2007). The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol.48: 1148–1158.
Zhai Q, Li C-B, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, and Li C*.(2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol.48: 1061–1071.
Zheng W, Zhai Q, Sun J, Li C-B, Zhang L, Li H, Zhang X, Li S, Xu Y, Jiang H, Wu X, and Li C*. (2006). Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol.141: 1400–1413.
Li C-B, Zhao J, Jiang H, Wu X, Sun J, Zhang C, Wang X, Lou Y, andLi C*.(2006). The wound-response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol. 47: 653–663.
Li C-B, Sun J, Jiang H, Wu X, andLi C*. (2006). Systemic defense signaling in tomato. Chinese Sci. Bull.50: 1817–1822.
Canoles MA, Beaudry RM, Li C, and Howe GA*. (2006). Deficiency of linolenic acid in lefad7 mutant tomato changes the volatile profile and sensory perception of disrupted leaf and fruit tissue. J. Amer. Soc. Hort. Sci.131: 284–289.
Mueller LA*, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata,D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, and Zamir D. (2005). The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genomics 6: 153–158.
Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, and Howe GA*.(2005). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell17: 971–986.
Li C, Liu G, Xu C, Lee G, Bauer P, Ganal M, Ling H, and Howe GA*.(2003). The tomato Suppressor of prosystemin-mediatedresponse2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell15: 1646–1661.
Li L#, Li C#, Lee GI, and Howe GA*. (2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA. 99: 6416–6421. (#These authors contributed equally to this work)
Li C, Williams MM, Loh Y-T, Lee GI, and Howe GA*. (2002). Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol.130: 494–503.
Li L,Li C, and Howe GA*.(2001). Genetic analysis of wound signaling in tomato: evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol.127: 1414–1417.